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ABSTRACT 
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1. Introduction 

Extended DCG notation: 
A Tool for Applicative Programming in Prolog 

Peter Van Roy 
vanroy@ernie .berkeley.edu 

Computer Science Division 
University of California 

Berkeley, CA 94720 

It is desirable to program in a purely applicative style, i.e. within the pure logical 
subset of Prolog. In that case a predicate's meaning depends only on its definition. and not 
on any outside information. This has two important advantages. First, it greatly simplifies 
verifying correcmess. Simple inspection is often sufficient. Second, since all information 
is passed locally, it makes the program more amenable to parallel execution. However, in 
practice the number of arguments of predicates written in this style is large, which makes 
writing and maintaining them difficult. Two ways of getting around this problem are (1) to 
encapsulate information in compound structures which are passed in single arguments, and 
(2) to use global instead of local information. Both of these techniques are commonly used 
in imperative languages such as C, but neither is a satisfying way to program in Prolog, for 
the following reasons: 

• Because Prolog is a single-assignment language, modifying encapsulated information 
requires a time-consuming copy of the entire structure. Sophisticated optimizations 
could make this efficient, but compilers implementing them do not yet exist 

• Using global information destroys the advantages of programming in an applicative 
style, such as the ease of mathematical analysis and the suitability for parallel execu
tion. 

A third approach with neither of the above disadvantages is extending Prolog to allow an 
arbitrary number of arguments without increasing the size of the source code. The 
extended Prolog is translated into standard Prolog by a preprocessor. This repon describes 
an extension to Prolog's Definite Cause Grammar notation that implements this idea. 

2. Definite Clause Grammar (DCG) notation 

DCG notation was developed as the result of research in natural language parsing and 
understanding [Pereira & Warren 1980]. It allows the specification of a class of attributed 
unification grammars with semantic actions. These grammars are strictly more powerful 
than context-free grammars. Prologs that conform to the Edinburgh standard [Qocksin & 
Mellish 1981] provide a built-in preprocessor that translates clauses written in DCG nota
tion into standard Prolog. 

An imponant Prolog programming technique is the accumulator [Sterling & Shapiro 
1986]. The DCG notation implements a single implicit accumulator. For example, the 
DCG clause: 

term(S) --> tactor(A), [+], factor(B), {Sis A+B}. 

is translated internally into the Prolog clause: 
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term(S,X1,X4) :- factor(A,X1,X2), X2•[+1X3], factor(B,X3,X4), Sis A+B. 

Each predicate is given two additional arguments. Chaining together these arguments 
implements the accumulator. 

3. Extending the DCG notation 

The DCG notation is a concise and clear way to express the use of a single accumula
tor. However, in the development of large Prolog programs I have found it useful to carry 
more than one accumulator. If written explicitly, each accumulator requires two additional 
arguments, and these arguments must be chained together. This requires the invention of 
many arbitrary variable names, and the chance of introducing errors is large. Modifying or 
extending this code, for example to add another accumulator, is tedious. 

One way to solve this problem is to extend the DCG notation. The extension 
described here allows for an unlimited number of named accumulators, and handles all the 
tedium of parameter passing. Each accumulator requires a single Prolog fact as its declara
tion. The bulk of the program source does not depend on the number of accumulators, so 
maintaining and extending it is simplified. For single accumulators the notation defaults to 
the standard DCG notation. 

Other extensions to the DCG notation have been proposed, for example Extraposition 
Grammars [Pereira 1981] and Definite Clause Translation Grammars [Abramson 1984]. 
The motivation for these extensions is natural-language analysis, and they are not directly 
useful as aids in program construction. 

4. An example 

To illustrate the extended notation, consider the following Prolog predicate which 
converts infix expressions containing identifiers, integers, and addition ( +) into machine 
code for a simple stack machine, and also calculates the size of the code: 

expr_code(A+B, Sl, S4, Cl, C4) :
expr_code(A, Sl, S2, Cl, C2), 
expr_code(B, S2, S3, C2, C3), 
C3•[plusiC4], /*Explicitly accumulate 'plus' */ 
S4 is 53+1. I* Explicitly add 1 to the size */ 

expr_code(I, Sl, S2, Cl, C2) :
atomic(I), 
Cl•[push(I) IC2], 
S2 is Sl+1. 

This predicate has two accumulators: the machine code and its size. A sample call is 
expr_code (a+3+b, 0, Size, Code, []),which returns the result: 

Size - 5 
Code- [push(a),push(3),plus,push(b),plus] 

With DCG notation it is possible to hide the code accumulator, although the size is still 
calculated explicitly: 



expr_code(A+B, 51, 54) --> 
expr_code(A, 51, 52), 
expr_code(B, 52, 53), 

- 3 -

(plus], /*Accumulate 'plus' in a hidden accumulator*/ 

{54 is 53+1}. /*Explicitly add 1 to the size*/ 

expr_code(I, 51, 52) --> 
{atomic (I)}, 
(push (I)), 
{52 is 51+1}. 

The extended notation hides both accumulators: 

expr_code(A+B) -->> 
expr_code (A), 
expr_code (B), 
(plus) :code, /* Accumulate 'plus' in the code accumulator */ 

(1) :size. /*Accumulate 1 in the size accumulator*/ 

expr_code(I) -->> 
{atomic (I)}, 
(push (I)): code, 
(1]:size. 

The translation of this version is identical to the original definition. The preprocessor 

needs the following declarations: 

acc_info(code, T, OUt, In, (Out•[TIIn]))./* Accumulator declarations*/ 

acc_info(size, T, In, OUt, (Out is In+T)). 

pred_info(expr_code, 1, (size,code]). /* Predicate declaration */ 

For each accumulator this declares the accumulating function, and for each predicate this 

declares the name, arity (number of arguments), and accumulators it uses. The order of the 

In and out arguments determines whether accumulation proceeds in the forward direc

tion (see size ) or in the reverse direction (see code ). Choosing the proper direction is 

important if the accumulating function requires some of its arguments to be instantiated. 

5. Concluding remarks 

An extension to Prolog's DCG notation that implements an unlimited number of 

named accumulators was developed to simplify purely applicative Prolog programming. A 

preprocessor for C-Prolog and Quintus Prolog is available by anonymous ftp to 

arpa.berkeley.edu or by contacting the author. Comments and suggestions for improve

ments are welcome. 

This research was partially sponsored by the Defense Advanced Research Projects 

Agency (DoD) and monitored by Space & Naval Warfare Systems Command under Con

tract No. N00014-88-K-0579. 
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This manual describes a preprocessor for Prolog that adds an arbitrary number of 

arguments to a predicate without increasing the size of the source code. The hidden argu

ments are of two kinds: 

(1) Accumulators, useful for results that are calculated incrementally in many predicates. 

An accumulator expands into two additional arguments per predicate. 

(2) Passed arguments, used to pass global information to many predicates. A passed 

argument expands into a single additional argument per predicate. 

The preprocessor has been tested under C-Prolog and Quintus Prolog. It is being used by 

the author in program development, and is believed to be relatively bug-free. However, it 

is still being refined and extended. The most recent version is available by anonymous ftp 

to arpa.berkeley.edu or by contacting the author. Please let me know if you find any bugs. 

Comments and suggestions for improvements are welcome. 

2. Using the preprocessor 
The preprocessor is implemented in the file accumulator. pl. It must be con

sulted or compiled before the programs that use it. In Prologs that conform to the Edin

burgh standard, such as C-Prolog or Quintus Prolog, the user-defined predicate 

term_expansion/2 is called when consulting or compiling each clause that is read. 

With this hook the use of the preprocessor is transparent. 

Oauses to be expanded are of the form (Head-->>Body) where Head and 

Body are the head and body of the clause. The head is always expanded with all of its 

hidden arguments. Table 1 summarizes the expansion rules for body goals. In the table, 

Goal denotes any goal in a clause body, Ace denotes an accumulator, Pass denotes a 

passed argument, and Arg denotes either an accumulator or a passed argument Hidden 

arguments of body goals that are not in the head have default values which can be overrid

den. For compatibility with DCG notation the accumulator dcg is available by default. 

If-then-else is not handled in this version. 

The preprocessor assumes the existence of a database of information about the hid

den parameters and the predicates to be expanded. Three relations are recognized: a 

declaration for each predicate, each accumulator, and each passed argument. These rela

tions can be put at the beginning of each file (in which case their scope is the file) or stored 
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Table 1 - Expansion rules for the preprocessor 
Body goal Action 

{Goal} Don't expand any hidden arguments of Goal. 
Goal Expand all of the hidden parameters of Goal that are also 

in the head. Those hidden parameters not in the head are 
given default values. 

Goal:L If Goal has no hidden arguments then force the expansion 
of all arguments in L in the order given. If Goal has hid-
den arguments then expand all of them, using the contents of 
L to override the expansion. L is either a term of the form 
Ace, Ace (Left,Right), Pass, Pass (Value), or a 
list of such terms. When present, the arguments Left, 
Right, and Value override the default values of argu-
ments not in the head. 

List:Acc Accumulate a list of terms in the accumulator Ace. 
List Accumulate a list of terms in the accumulator dcg. 
X/Arg Unify x with the left term for the accumulator or passed ar-

gument Arg. 
Acc/X Unify X with the right term for accumulator Ace. 

X/Acc/Y Unify X with the left and Y with the right term for the ac-
cumulator Ace. 

insert(X,Y) :Ace Insert the arguments X and Y into the chain implementing 
the accumulator Ace. This is useful when the value of the 
accumulator changes radically because X and Y may be the 
arguments of an arbitrary relation. 

insert(X,Y) Insert the arguments X and Y into the chain implementing 
the accumulator dcg . This inserts the difference list X-Y 
into the accumulated list 

in a separate file that is consulted first (in which case their scope is the whole program). 

A short example gives a flavor of what the preprocessor does: 

% Declare the accumulator 'castor': 
acc_info(castor, _, _, _, true). 

% Declare the passed argument 'pollux': 
pass_info(pollux). 

% Declare three predicates using these hidden arguments: 
pred_info (p, 1, [castor,pollux]). 
pred_info(q, 1, [castor,pollux]). 
pred_info (r, 1, [castor, pollux]). 

% The program: 
p(X) -->> Y is X+1, q(Y), r(Y). 

This example declares one accumulator, one passed argument, and three predicates using 
them. The program consists of a single clause. The preprocessor is used as follows: 
(bold-face denotes user input) 

% cprolog 
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C-Prolog version 1.5 
1 ?- ['accumulator.pl']. 
accurnulator.pl consulted 9780 bytes 1.7 sec. 

yes 
I ?- ['example.pl']. 
example.pl consulted 668 bytes 0.25 sec. 

yes 
I ?-

Now the predicate p (X) has been expanded. We can see what it looks like with the 
listing command: 

I ?- listing(p). 

p(X, 51, 53, P) :- Y is X+1, q(Y, 51, 52, P), r(Y, 52, 53, P). 

(Variable names have been changed for clarity.) The arguments Sl, S2, and S3, which 
implement the accumulator castor, are chained together. The argument P implements 
the passed argument It is added as an extra argument to each predicate. 

In object-oriented terminology the declarations of hidden parameters correspond to 
classes with a single method defined for each. Declarations of predicates specify the inher
itance of the predicate from multiple classes, namely each hidden parameter. 

3. Declarations 

3.1. Declaration of the predicates 

Predicates are declared with facts of the following form: 

pred_info(Name, Arity, List) 

The predicate Name/Arity has the hidden parameters given in List. The parameters 
are added in the order given by List and their names must be atoms. 

3.2. Declaration of the accumulators 

Accumulators are declared with facts in one of two forms. The short form is: 

acc_info(Acc, Term, Left, Right, Joiner) 

The long form is: 

acc_info(Acc, Term, Left, Right, Joiner, L5tart, R5tart) 

In most cases the short form gives sufficient information. It declares the accumulator 
Ace, which must be an atom, along with the accumulating function, Joiner, and its 
arguments Term, the term to be accumulated, and Left & Right, the variables used 
in chaining. 

The long form of acc_info is useful in more complex programs. It contains two 
additional arguments, LStart and RStart, that are used to give default starting 
values for an accumulator occurring in a body goal that does not occur in the head. The 
starting values are given to the unused accumulator to ensure that it will execute correctly 
even though its value is not used. Care is needed to give correct values for LStart and 
RStart. For DCG-like list accumulation both may remain unbound. 
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Two conventions are used for the two variables used in chaining depending on which 
direction the accumulation is done. For forward accumulation, Left is the input and 
Right is the output. For reverse accumulation, Right is the input and Left is the 
output. 

To see how these declarations work, consider the following program: 

% Example illustrating the difference between 
% forward and reverse accumulation: 

% Declare the accumulators: 
acc_info(fwd, T, In, Out, Out=[TIIn]). 
acc_info(rev, T, Out, In, Out•[TIIn]). 

% Declare the predicates using them: 
pred_info (flist, 1, [fwd]). 
pred_info (rlist, 1, [rev]) . 

% Forward accumulator. 
% Reverse accumulator. 

% flist(N, [], List) creates the list [1, 2, ... , N] 

flist(O) -->> []. 
flist(N) -->> N>O, [N] :fwd, N1 is N-1, flist(N1). 

% rlist (N, List, []) creates the list [N, ... , 2, 1] 

rlist(O) -->> []. 
rlist(N) -->> N>O, [N] :rev, N1 is N-1, rlist(N1). 

This defines two accumulators fwd and rev that both accumulate lists, but in different 
directions. The joiner of both accumulators is the unification Out- [ T 1 In], which adds 
T to the head of the list In and creates the list Out. In accumulator fwd the output 
Out is the left argument and the input In is the right argument This builds the list in 
ascending order. Switching the arguments, as in the accumulator rev, builds the list in 
reverse. A sample execution gives these results: 

I '?- flist(10, [], List). 

List= [1,2,3,4,5,6,7,8,9,10] 

yes 
I '?- rlist (10, List, []). 

List- [10,9,8,7,6,5,4,3,2,1] 

yes 
I '?-

If the joining function is not reversible then the accumulator can only be used in one direc
tion. For example, the accumulator add with declaration: 

acc_info(add, I, In, Out, Out is I+In). 

It can only be used as a forward accumulator. Attempting to use it in reverse results in an 
error because the argument In of the joiner is uninstantiated. The reason for this is that 
the predicate is I 2 is not pure logic: it requires the expression in its right-hand side to be 
ground. 
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3.3. Declaration of the passed arguments 

Passed arguments are declared as facts in one of two fonns. The short fonn is: 

pass_info(Pass) 

The long fonn is: 

pass_info(Pass, PStart) 

In most cases the short fonn is sufficient. It declares a passed argument Pass, that must 

be an atom. The long fonn also contains the starting value PStart that is used to give a 

default value for a passed argument in a body goal that does not occur in the head. Most of 

the time this situation does not occur. 

4. Tips and techniques 
Usually there will be one clause of pred_info for each predicate in the program. 

If the program becomes very large, the number of clauses of pred _info grows accord

ingly and can become difficult to keep consistent. In that case it is useful to remember that 

a single pred_info clause can summarize many facts. For example, the following 

declaration: 

pred_info(_, , List). 

gives all predicates the hidden parameters in List. This keeps programming simple 

regardless of the number of hidden parameters. 
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An example using the extended DCG preprocessor 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Copyright (C) 1989 Regents of the University of California. 

% All rights reserved. This program may be freely used and modified for 

% non-commercial purposes provided this copyright notice is kept unchanged. 

% Written by Peter Van Roy 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The compilation of unification into a low-level intermediate language. 

% For an explanation of what this program does see "An Intermediate Language 

% to Support Prolog's Unification", Proceedings of the 1989 North American 

% Conference on Logic Programming, MIT Press, vol. 2, pp. 1148-1164. 

% Some sample executions: 
% ?- u(X, a, [X]' Out). 
% ?- u (X, [Y,Z], [X,Y,Z], Out). 
% ?- u(X, t(1,2,s(3)), [], Out). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Declarations: 

% Accumulators: 
ace info(code, - T, Out, In, (Out=[TIIn])). % Generated code. 

acc_info(vars, v, In, Out, incl(V,In,Out)). % Set of initialized variables. 

ace info(offset, I, In, Out, (Out is I+In)). % Offset into writemode term. -
acc_info(size, I, In, Out, (Out is I+In)). % Size of a term. 

% Predicates: 
pred_info(u, 2, vars ]) . 

pred_info(init_var, 3, code]). 

pred_info(Name, Arity, vars,code]) ·- member(Name/Arity, 

[unify/2, uninit/2, init/4, unify_var/2, unify_block/4, make_slots/5, 

unify_writemode/4, unify_readmode/3, unify_args/6, unify_arg/6]). 

pred_info(block, 2, [offset,vars,code]). 

pred_info(block_args, 5, [offset,vars,code]). 

pred_info (size, 1, [size]) . 
pred_info (size_args, 3, [size]) . 

member (X, [X I_] ) . 
member (X, [ I L]) member (X, L) . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% u(X, T, In, Out) 
% Unify variable X with term T and write the result: 

u(X, T) -->> unify(X, T):code(Code,[]), write_code(Code, 4). 

% unify(X, T, In, Out, Code, Link) 

% Unify the variable X with the term T, given the set In of 

% variables initialized before the unification. 

% Return the intermediate code generated in the accumulator 'code' 
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% and the set Out of variables initialized after the unification. 
unify (X, T) -->> In/vars, \+in (X, In), ! , uninit (X, T) . 
unify(X, T) -->> In/vars, in(X, In), !, init(X, T, nonlast, 

%**** Uninit assumes X has not yet been initialized: 
uninit (X, T) -->> compound (T), ! , [move (Tag·h, X) ] :code, 

ter.mtag(T, Tag), unify_block(nonlast, T, _, _), [X] :vars. 
uninit(X, T) -->> atomic(T), !, [move(tatm·T, X)]:code, (X]:vars. 
uninit (X, T) -->> var (T), ! , unify_var (X, T) . 

%**** Init assumes X has already been initialized: 
init(X, T, Last, LLbls) -->> nonvar(T), !, 

ter.mtag (T, Tag) , 
[de ref (X), switch (Tag, X, [trail (X) 1 Write], Read, fail)] :code, 
insert(In,Out) :vars, 
{unify_writemode(X, T, Last, 
{unify_readmode(X, T, LLbls, 

init(X, T, _, _) -->> var(T), 

LLbls, In, , Write, 
In, Out, Read, [])}. 
!, unify_var(X, T). 

%**** Unifying two variables together: 
unify_var(X, Y) -->> In/vars, in(X, In), in(Y, In), 
unify_var(X, Y) -->> In/vars, in(X, In), \+in(Y, In), 

[Y] :vars. 
unify_var(X, Y) -->> In/vars, \+in(X, In), in(Y, In), 

[X] :vars. 

I . , 
I . , 

I . , 

[] ) } , 

[unify(X,Y,fail)] :code. 
[move(X,Y)] :code, 

[move(Y,X)] :code, 

unify_var(X, Y) -->> In/vars, \+in(X, In), \+in(Y, In), !, 
[move(tvar·h,X), move(tvar·h,Y), add(1,h), move(Y, [h-1])] :code, 
[X,Y] :vars. 

%**** Unify_readmode assumes X is a dereferenced nonvariable 
% at run-time and T is a nonvariable at compile-time. 
unify_readmode(X, T, LLbls) -->> structure(T), !, 

functor (T, F, N), [equal ([X], tatm· (F /N), fail)] :code, 
unify_args(1, N, T, 0, X, LLbls). 

unify_readmode(X, T, LLbls) -->> cons(T), !, 
unify_args(1, 2, T, -1, X, LLbls). 

unify_readmode(X, T, _l -->> atomic(T), !, 
[equal(X,tatm·T,fail)] :code. 

unify_args(I, N, _, _, _, _) -->> I>N, !. 
unify_args(I, N, T, D, X, [_ILLbls]) -->>I-N, !, 

unify_arg(I, T, D, X, last, LLbls). 
unify_args (I, N, T, D, X, LLbls) -->> I<N, ! , 

unify_arg(I, T, D, X, nonlast, ) , 
I1 is I+l, unify_args(I1, N, T, D, X, LLbls). 

unify_arg(I, T, D, X, Last, LLbls) -->> 
[move([X+ID],Y)] :code, 
ID is I+D, arg(I, T, A), 
[Y] :vars, 
init(Y, A, Last, LLbls). 

%**** Unify_writemode assumes X is a dereferenced unbound 
% variable at run-time and T is a nonvariable at compile-time. 
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unify_writemode(X, T, Last, LLbls) -->> compound(T), 
[move(Tag~h, [X))] :code, 
terrntag(T, Tag), 
unify_block(Last, T, _, LLbls). 

unify_writemode(X, T, _, _) -->> atomic(T), ' . , 
[move(tatm~T, [X])) :code. 

' . , 

%**** Generate a minimal sequence of moves to create T on the heap: 
unify_block( last, T, Size, [Lbll ]) -->> !, 

size(T) :size(O,Size), 
[add(Size,h),jurnp(Lbl)] :code. 

unify_block(nonlast, T, Size, [_ILLbls]) -->> !, 
size (T) :size (0, Size), Offset is -Size, 
[add(Size,h)] :code, 
block(T, LLbls) :offset(Offset,O). 

block(T, LLbls) -->> structure(T), !, D/offset, 
[move (tatm~ (F/N), [h+D])] :code, 
functor(T, F, N), 
[N] :offset, [1] :offset, 
Dl is D+l, 
make_slots(l, N, T, Dl, Offsets), 
block_args(l, N, T, Offsets, LLbls) 

block(T, LLbls) -->> cons(T), !, D/offset, 
[2] :offset, 
make_slots(l, 2, T, D, Offsets), 
block_args(l, 2, T, Offsets, LLbls). 

block (T, []) -->> atomic (T), ! . 
block (T, []) -->> var (T), ! . 

block_args (I, N, _, [], []) -->> I>N, ! . 

block_args (I, N, T, [D), [Lbll LLbls]) -->> I=N, ! , D/offset, 
[label(Lbl)] :code, 
arg(I, T, A), block(A, LLbls). 

block_args (I, N, T, [D !Offsets], LLbls) -->> I<N, ! , D/offset, 
arg(I, T, A), block(A, _), Il is I+l, 
block_args(Il, N, T, Offsets, LLbls). 

make_slots(I, N, [)) -->> I>N, ! . 

make_slots (I, N, T, D, [Off 1 Offsets]) -->> I=<N, 
arg(I, T, A), 
In/vars, init_var(A, D, In), 
rnake_word(A, Off, Word), 
[move(Word, [h+D))] :code, 
[A] :vars, 
Dl is D+l, Il is I+l, 
make_slots(Il, N, T, Dl, Offsets) . 

% Initialize first-time variables in write mode: 
init _var(V, I, In) -->> var (V), \+in(V, In), I . , 
init _var(V, _, In) -->> var (V), in(V, In), ! . 
init _var(V, _, - ) -->> nonvar (V), ! . 

' . , 

[move(tvar~(h+I),V)] :code. 

make_word(C, Off, Tag~(h+Off)) ·- compound(C), !, terrntag(C, Tag). 
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·- var (V) , ! . 
·- atomic (A) , ! . 

% Calculate the size of T on the heap: 

size(T) -->> structure(T), !, 
functor(T, _, N), [l):size, [N):size, size_args(l, N, T). 

size (T) -->> cons (T) , ! , 
[2] :size, size_args(l, 2, T) 

size (T) -->> atomic (T), ! . 

size (T) -->> var (T), ! . 

size_args(I, N, _) -->> I>N, 

size_args(I, N, T) -->> I=<N, 
! . 
I 
• I 

arg(I, T, A), size(A), Il is I+l, size_args (Il, N, T). 

%**** Utility routines: 

in(A, [BIS]) ·- compare(Order, A, B), in_2(0rder, A, S). 

in 2 (-, I ) . -
in 2 (>, A, S) ·- in(A, S). -
incl (A, Sl, Sl var (A), I incl 2(51, A, S) . 

• I -
incl(A, s, S) ·- nonvar (A). 

incl_2 ( [], A, [A] l. 
incl_2([BIS1], A, S) :- compare(Order, A, B), incl_3(0rder, A, B, Sl, S). 

incl_3(<, A, B, Sl, [A,BISl]). 

incl 3(-, I B, Sl, [B I Sl]). - -
incl_3(>, A, B, Sl, [B IS] l ·- incl 2 (Sl, A, S). -

compound (X) ·- nonvar(X), \+atomic (X) . 

cons(X) ·- compound (X) , X ... [ I ] . 
structure(X) ·- compound(X), \+X=[ _I_ ] . 

termtag(T, tstr) ·- structure (T) . 

termtag (T, tlst) ·- cons (T) . 

termtag (T, tatm) ·- atomic (T). 

termtag (T, tvar) ·- var(T). 

write_ code ( [], _) . 
write_code([IIL], N) :- write_code(I, L, N). 

write_code(switch(Tag,V,Wbr,Rbr,Fail), L, N) :- !, Nl is N+4, 

tab(N), write('switch('), write(V), write(') {'), nl, 

tab(N), write(tvar), write(':'), nl, write_code(Wbr, Nl), 

tab(N), write(Tag), write(':'), nl, write_code(Rbr, Nl), 

tab(N), write('else: '), write(Fail), nl, 

tab(N), write('}'), nl, write_code(L, N). 

write_code(label(Lbl), L, N) :- !, Nl is N-4, 

tab(Nl), write(Lbl), write(':'), nl, write_code(L, N). 

write_code(Instr, L, N)' :-
tab(N), write(Instr), nl, write_code(L, N). 



Source code of the extended DCG preprocessor 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Copyright (C) 1989 Peter Van Roy and Regents of the University of California. 

% All rights reserved. This program may be freely used and modified for 

% non-commercial purposes provided this copyright notice is kept unchanged. 

% Written by Peter Van Roy 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Multiple hidden parameters: an extension to Prolog's DCG notation. 

% Version: July 16, 1989 

op ( 1200, xfx, 
op ( 850, xfx, 

[I-->>' ] ) • 
[I ; I ] ) • 

% Same as ':-'. 
%Slightly tighter than',' and'\+'. 

% The predicate term_expansion/2 implements the extended translation. 

% If loaded into Prolog along with the appropriate acc_info, pass_info, 

% and pred_info facts it will be used automatically when consulting programs. 

term_expansion((H-->>B), (TH:-FTB)) 
functor(H, Na, Ar), 
'_has_hidden' (H, HList), 
'_new_goal' (H, HList, HArity, TH), 
'_create_acc_pass' (HList, HArity, TH, Ace, Pass), 

'_flat_conj' (B, FB), 
'_expand_body' (FB, TB, Na/Ar, HList, Ace, Pass), 

'_flat_conj' (TB, FTB), ! . 

'_expand_body' (true, true, _, Ace, :- '_finish_acc' (Ace). 

'_expand_body' ((G,B), (TG,TB), NaAr, HList, Ace, Pass) ·

'_expand_goal' (G, TG, NaAr, HList, Ace, NewAcc, Pass), 

'_expand_body' (B, TB, NaAr, HList, NewAcc, Pass). 

% Expand a single goal: 
'_expand_goal' ({G), G, _, _, Ace, Ace, _) :- ! . 

'_expand_goal' (insert(X,Y), LeftA=X, _, _, Ace, NewAcc, _) ·-

'_replace_acc' (dcg, LeftA, RightA, Y, RightA, Ace, NewAcc), !. 

'_expand_goal' (insert(X,Y) :A, LeftA=X, _, _, Ace, NewAcc, _) ·

'_replace_acc' (A, LeftA, RightA, Y, RightA, Ace, NewAcc), ! . 

% Force hidden arguments in L to be appended to G: 

'_expand_goal' ( (G:A), TG, _, HList, Ace, NewAcc, Pass) ·-
\+'_list' (G), 
'_has_hidden' (G, []), I . , 
'_make_list' (A, AList), 
'_new_goal' (G, AList, GArity, TG), 
'_use_acc_pass' (AList, GArity, TG, Ace, NewAcc, Pass). 

% Use G's regular hidden arguments & override defaults for those arguments 

% not in the head: 
'_expand_goal' ((G:A), TG, _, HList, Ace, NewAcc, Pass) 

\+'_list' (G), 
'_has_hidden' (G, GList), GList \== [], ! , 

'_make_list' (A, L), 
'_new_goal' (G, GList, GArity, TG), 
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'_replace_defaults' (GList, NGList, L), 
'_u~e_acc_pass' (NGList, GArity, TG, Ace, NewAcc, Pass) 

'_expand_goal' ((L:A), Joiner, NaAr, , Ace, NewAcc, _) 
'_list'(L), !, 
'_joiner' (L, A, NaAr, Joiner, Ace, NewAcc). 

'_expand_goal' (L, Joiner, NaAr, _, Ace, NewAcc, 
'_list' (L), ! , 
'_joiner' (L, dcg, NaAr, Joiner, Ace, NewAcc). 

'_expand_goal' ((X/A), true,_,_, Ace, Ace,_) . 
var(X), nonvar(A), 
'_member' (acc(A,X,_), Ace), ! . 

'_expand_goal' ((X/A), true,_,_, Ace, 
var(X), nonvar(A), 
'_member' (pass (A, X), Pass), ! . 

'_expand_goal' ((A/X), true,_,_, Ace, 
var(X), nonvar(A), 

Ace, Pass) 

Ace, _) 

'_member'(acc(A,_,X), Ace), !. 
'_expand_goal' ((X/A/Y), true,_,_, Ace, Ace,_) 

var(X), var(Y), nonvar(A), 
'_member' (ace (A, X, Y), Ace), ! . 

'_expand_goal' ((X/Y), true, NaAr, _, Ace, Ace,_) ·-
write('*** Warning: in '),write(NaAr),write(' the term '),write(X/Y), 
write(' uses a non-existent hidden parameter.'),nl. 

% Defaulty cases: 
'_expand_goal' (G, TG, HList, _, Ace, NewAcc, Pass) ·

'_has_hidden' (G, GList), !, 
'_new_goal' (G, GList, GArity, TG), 
'_use_acc_pass' (GList, GArity, TG, Ace, NewAcc, Pass). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Operations on the Ace and Pass data structures: 

% Create the Ace and Pass data structures: 
% Ace contains terms of the form acc(A,LeftA,RightA) where A is the name of an 
% accumulator, and RightA and LeftA are the accumulating parameters. 
%Pass contains terms of the form pass(A,Arg) where A is the name of a passed 
% argument, and Arg is the argument. 
'_create_acc_pass' ( [], _, _, [], []). 
'_create_acc_pass' ( [AIAList], Index, TGoal, [acc(A,LeftA,RightA) lAce], Pass) ·

, _is_acc' (A), ! , 
Indexl is Index+l, 
arg(Indexl, TGoal, LeftA), 
Index2 is Index+2, 
arg(Index2, TGoal, RightA), 
'_create_acc_pass' (AList, Index2, TGoal, Ace, Pass). 

'_create_acc_pass' ([AIAList], Index, TGoal, Ace, [pass(A,Arg) !Pass]) 
'_is_pass' (A), ! , 
Indexl is Index+l, 
arg(Indexl, TGoal, Arg), 
'_create_acc_pass' (AList, Indexl, TGoal, Ace, Pass). 

'_create_acc_pass' ([AIAList], Index, TGoal, Ace, Pass) 
\+'_is_acc' (A), 
\+' _is_pass' (A), 



- 3-

write('*** Error: '),write(A), 

write(' is not a hidden parameter.'),nl. 

% use the Ace and Pass data structures to create the arguments of a body goal: 

% Add the hidden parameters named in GList to the goal. 

'_use_acc_pass' ((], _, _, Ace, Ace,_). 

% la. The accumulator A is used in the head: 

'_use_acc_pass' ([AIGList], Index, TGoal, Ace, NewAcc, Pass) ·

'_replace_acc' (A, LeftA, RightA, MidA, RightA, Ace, MidAcc), 

Indexl is Index+l, 
arg(Indexl, TGoal, LeftA), 

Index2 is Index+2, 
arg(Index2, TGoal, MidA), 
'_use_acc_pass' (GList, Index2, TGoal, MidAcc, NewAcc, Pass). 

% lb. The accumulator A is not used in the head: 

'_use_acc_pass' ([AIGList], Index, TGoal, Ace, NewAcc, Pass) 

'_acc_info' (A, LStart, RStart), ! , 

Indexl is Index+l, 
arg(Indexl, TGoal, LStart), 

Index2 is Index+2, 
arg(Index2, TGoal, RStart), 

'_use_acc_pass' (GList, Index2, TGoal, Ace, NewAcc, Pass). 

% 2a. The passed argument A is used in the head: 

'_use_acc_pass' ([AIGList], Index, TGoal, Ace, NewAcc, Pass) 

'_is_pass' (A), 
'_member' (pass (A, Arg), Pass), ! , 

Indexl is Index+l, 
arg(Indexl, TGoal, Arg), 
'_use_acc_pass' (GList, Indexl, TGoal, Ace, NewAcc, Pass). 

% 2b. The passed argument A is not used in the head: 

'_use_acc_pass' ([AIGList], Index, TGoal, Ace, NewAcc, Pass) ·-

, _pass_info' (A, AStart), ! , 

Indexl is Index+l, 
arg(Indexl, TGoal, AStart), 

'_use_acc_pass' (GList, Indexl, TGoal, Ace, NewAcc, Pass). 

% 3. Defaulty case when A does not exist: 

'_use_acc_pass' ([AIGList], Index, TGoal, Ace, Ace, Pass) ·

write('*** Error: the hidden parameter '),write(A), 

write(' does not exist.'),nl. 

% Finish the Ace data structure: 

% Link its Left and Right accumulation variables together in pairs: 

'_finish_acc' ([]). 

'_finish_acc' ([ace(_, Link, Link) I Ace]) :- '_finish_ ace' (Ace) . 

% Replace elements in the Ace data structure: 

% Succeeds iff replacement is successful. 

'_replace_acc' (A, Ll, Rl, L2, R2, Ace, NewAcc) ·-

,_member' (ace (A, Ll, Rl), Ace), ! , 

'_replace' (acc(A,_,_), acc(A,L2,R2), Ace, NewAcc). 

I . , 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Specialized utilities: 
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% Given a goal Goal and a list of hidden parameters GList 
% create a new goal TGoal with the correct number of arguments. 
% Also return the arity of the original goal. 
'_new_goal' (Goal, GList, GArity, TGoal) ·-

functor(Goal, Name, GArity), 
'_number_args' (GList, GArity, TArity), 
functor(TGoal, Name, TArity), 
'_match' (1, GArity, Goal, TGoal). 

% Add the number of arguments needed for the hidden parameters: 
'_number_args' ([], N, N). 
'_number_args' ([AIList], N, M) ·-

, _is_acc' (A), ! , 
N2 is N+2, 
'_number_args' (List, N2, M). 

'_number_args' ([AIList], N, M) ·
, _is_pass' (A), ! , 
Nl is N+1, 
'_number_args' (List, Nl, M). 

%Give a list of G's hidden parameters: 
'_has_hidden' (G, GList) ·-

functor(G, GName, GArity), 
pred_info(GName, GArity, GList). 

' has_hidden' (G, []) ·-
functor(G, GName, GArity), 
\+pred_info(GName, GArity, ) . 

% Succeeds if A is an accumulator: 
'_is_acc' (A) ·- atomic (A), ! , ' acc_info' (A, _, _, _, _, _) . 
'_is_acc' (A) :- functor(A, N, 2), !, ' ace info' (N, _, _, _, _, _, 

% Succeeds if A is a passed 
'_is _pass' (A) ·- atomic (A), 
'_is _pass' (A) :- functor (A, 

argument: 
! , '_pass_info' (A, ) . 
N, 1), ! , '_pass_info' (N, _) . 

% Get initial values for the accumulator: 
'_acc_info' (AccParams, LStart, RStart) 

functor(AccParams, Ace, 2), 
'_is_acc' (Ace), !, 
arg(l, AccParams, LStart), 
arg(2, AccParams, RStart). 

' acc_info' (Ace, LStart, RStart) ·-
'_acc_info' (Ace,_, _, , LStart, RStart). 

% Isolate the internal database from the user database: 
'_acc_info' (Ace, Term, Left, Right, Joiner, LStart, RStart) ·

acc_info(Acc, Term, Left, Right, Joiner, LStart, RStart). 
'_acc_info' (Ace, Term, Left, Right, Joiner,_,_) ·

acc_info(Acc, Term, Left, Right, Joiner). 
'_acc_info' (dcg, Term, Left, Right, Left=[TermiRight], _, (]). 

% Get initial value for the passed argument: 
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% Also, isolate the internal database from the user database. 

'_pass_info' (PassParam, PStart) 
functor(PassParam, Pass, 1), 
'_is_pass' (Pass), ! , 
arg(l, PassParam, PStart) 

'_pass_info' (Pass, PStart) ·
pass_info(Pass, PStart) 

'_pass_info' (Pass,_) 
pass_info (Pass). 

% Calculate the joiner for an accumulator A: 

'_joiner'([],_,_, true, Ace, Ace). 
' joiner' ([Term I List], A, NaAr, (Joiner, LJoiner), Ace, NewAcc) ·-

- ' replace ace' (A, LeftA, RightA, MidA, RightA, Ace, MidAcc), 

,-ace inf~' (A, Term, LeftA, MidA, Joiner, ), !, 

'=joi~er' (List, A, NaAr, LJoiner, MidAcc, NewAcc). 

% Defaulty case: 
'_joiner' ([TermiList], A, NaAr, Joiner, Ace, NewAcc) 

write('*** Warning: in '),write(NaAr), 
write(' the accumulator '),write(A), 
write(' does not exist.'),nl, 
'_joiner' (List, A, NaAr, Joiner, Ace, NewAcc). 

% Replace hidden parameters with ones containing initial values: 

'replace_defaults'([], [], ). 
'_replace_defaults' ( [AIGList], [NAINGList], AList) ·

'_replace_default' (A, NA, AList), 
'_replace_defaults' (GList, NGList, AList). 

'_replace_default' (A, NewA, AList) 
functor(NewA, A, 2), 
'_member' (NewA, AList), ! . 

'_replace_default' (A, NewA, AList) 
functor(NewA, A, 1), 
'_member' (NewA, AList), 

'_replace_default' (A, NewA, _) 
A=NewA. 

! . 

% New initial values for accumulator. 

%New initial values for passed argument. 

% Use default initial values. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Generic utilities: 

%Match arguments L, L+l, ... , H of the predicates P and Q: 
'_match' (L, H, _, ) ·- L>H, ! . 

'_match' (L, H, P, Q) ·- L-<H, ! , 
arg(L, P, A), 
arg (L, Q, A), 
Ll is L+l, 
'_match' (Ll, H, P, Q) • 

% Flatten a conjunction and terminate it with 'true': 

'_flat_conj' (Conj, FConj) :- '_flat_conj' (Conj, FConj, true). 

'_flat_conj' (true, X, X). 



'_flat_conj' ((A, B), Xl, X3) ·-
' _flat_conj' (A, Xl, X2), 
'_flat_conj' (B, X2, X3). 

' flat_conj' (G, (G, X), X) ·
\+G=true, 
\+G={ , ) . 

'_member' (X, [X I_]) . 
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'_member' (X, [_I L]) ·- '_member' (X, L) . 

'_list' (L) 
'_list' (L) 

nonvar (L), L= [ I ] , ! . 
L=- []' ! . 

'_append'([], L, L). 
'_append'([XILl], L2, [XIL3]) :- '_append'(Ll, L2, L3). 

'_make_list'(A, [A]) ·- \+'_list'(A), !. 
'_rnake_list' (L, L) ·- '_list' (L), ! . 

% replace(Elem, RepElem, List, RepList) 
'_replace'(_, _, [], []). 
'_replace'(A, B, [AIL], [BIR]) ·- !, 

'_replace' (A, B, L, R). 
'_replace' (A, B, [C I L], [C I R]) ·

\+C-A, ! , 
'_replace' (A, B, L, R). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


